Development of an activity-based model incorporating mid- to long-term social network data

Survey/Experiment Data

2. Panel data on travel behavior changes during the COVID-19 pandemic in Japan (2020-2021)

1. Joint activity detection using Google maps location history data (2020)

Research Output

Working papers

1. Suzuki,K., Oyama, Y., Chikaraishi,M., Parady, G.: The effectiveness of using Google Maps Location History data to detect joint activities in social networks

Peer-reviewed journal articles

2. Parady, G., Taniguchi, A., Takami, K. (2020) Travel behavior changes during the COVID-19 pandemic in Japan: Analyzing the effects of risk perception and social influence on going-out self-restriction. Transportation Research Interdisciplinary Perspectives 7, 100181 (Open Access)

1. Parady G., Ory, D., Walker, J.  (2021) The overreliance on statistical goodness of fit and under-reliance on validation in discrete choice models: A review of validation practices in the transportation academic literature . Journal of Choice Modelling 38, 100257 (Open Access)

Conference presentations

5. 森隆慶, パラディ ジアンカルロス,高見淳史, 谷口綾子: 新型コロナウイルス蔓延下での個人の外出自粛行動に対する社会的影響に関する研究 ―モバイル空間統計を活用して― 第65回土木計画学研究発表会・春大会, 2022年6月.

4. Suzuki, K., Oyama, Y., Chikaraishi,M., Parady, G. (2021) The effectiveness of using Google Maps Location History data to detect joint activities in social networks. Presented at the 3rd Bridging Transportation Researchers conference, August 5-6.

3. 石橋拓海, 谷口綾子, Giancarlos Parady, 高見淳史: COVID-19蔓延初期の行動変容と要因の日英独三カ国比較  第63回土木計画学研究発表会・春大会, 2020年6月.

2. 力石真,パラディ ジアンカルロス,原田昇,Swarnali Dihingia,高見淳史:活動参加を通じたソーシャルネットワーク発展過程のモデル化 第62回土木計画学研究発表会・秋大会、2020

1. Parady, G., Taniguchi, A., Takami, K. (2020) Analyzing Risk Perception and Social Influence Effects on Self-Restriction Behavior in Response to the COVID-19 Pandemic in Japan: First Results. Presented at the 2nd Bridging Transport conference, August 11-12.

%d bloggers like this:
search previous next tag category expand menu location phone mail time cart zoom edit close